

Stencil Nano-Coatings-Do They Improve Repeatability and Uniformity in The Print Process?

Greg Smith BlueRing Stencils Lumberton, NJ USA

APEX SUCCEED VELDEITY AT THE OF TECHNOLOGY

Outline

- Introduction
- Experimental Methodology
- Results
 - SPI Print Volume
 - Print Height
 - Print Area
- Conclusions

APEX SUCCEED VELDCITY AT THE OF TECHNOLOGY

Introduction

Benefits of Nano-Coatings

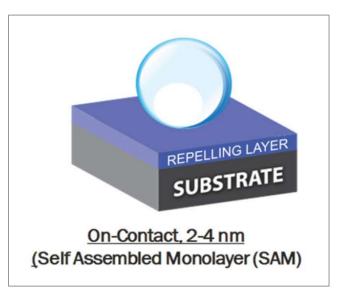
- Hydrophobic-repel water based chemistry (flux)
- Oleophobic-repel oil based chemistry (flux)
- Improved Transfer Efficiency (Ceramic)
- Reduced Underside Cleaning Frequency(Ceramic and Self-Assembled Monolayer)
- Reduced Bridging after print (Ceramic and Self-Assembled Monolayer)

Types of Nano-Coatings

Self Assembled Monolayer

Ceramic-Spray Coat and Cure

Types of Nano-Coatings

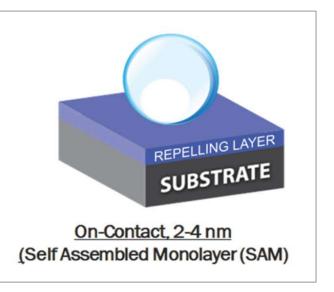

Self Assembled Monolayer

SUCCEED VELOCITY AT THE

- Manually applied to the board side of stencil
- Thickness is 2-4 nano meters

of TECHNOLOGY

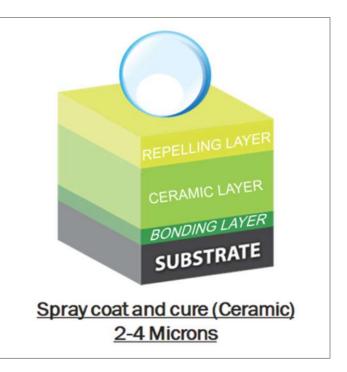
- Clear-no color
- Validation done by testing surface energy
- Can be reapplied
- Primary benefits are reduced underside cleaning and reduced bridging



Types of Nano-Coatings

SUCCEED VELOCITY AT THE OF TECHNOLOGY

Self Assembled Monolayer-Testing Surface Energy



Types of Nano-Coatings

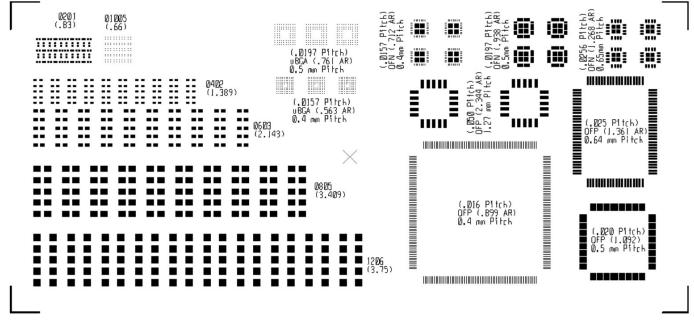
SUCCEED VELOCITY AT THE

OF TECHNOLOGY

- Ceramic
 - Applied with custom, precision spray equipment
 - Thickness is 2-4 microns
 - Color and UV dye
 - Cured after coating to create a hard, durable coating
 - Lower Coefficient of Variation in Print Process
 - Primary benefits are reduced underside cleaning, reduced bridging, and increased transfer efficiency on small aperture printing

APEX SUCCEED VELOCITY AT THE OF TECHNOLOGY

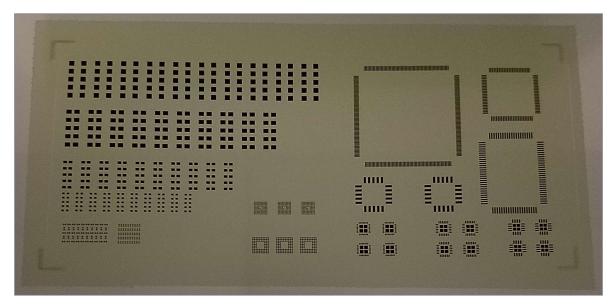
Introduction


Purpose of this study

- Over the past several years, most papers on stencil coatings focus on
 - Volume or transfer efficiency
 - Reduced underside cleaning
 - Reduced bridging
- This presentation adds height and area data in addition to volume data to determine if nanocoatings are beneficial across a wide range of components.

Test Vehicle

Three stencils, one with SAM coating, one with Ceramic coating and one is uncoated


Test Vehicle

Three stencils, one with SAM coating, one with Ceramic coating and one is uncoated

Test Vehicle

Three stencils, one with SAM coating, one with Ceramic coating and one is uncoated

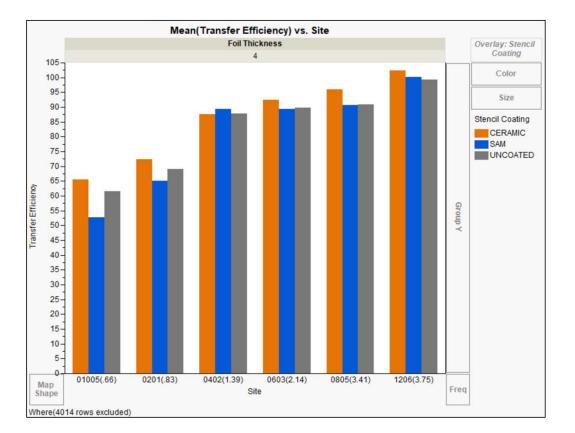
SUCCEED VELOCITY AT THE OF TECHNOLOGY

Print Parameters

Parameter	Value
Squeegee Length	300 mm
Squeegee Pressure	5 Kg
Squeegee Speed	30 mm/sec
Squeegee Angle	60 degrees
Separation Speed	3.0 mm/sec
Cleaning Solvent	IPA
Cleaning Cycle	2 Prints (W, V, V)
Solder Paste	NC SAC305 T4

Print Parameters

- 50 Boards Printed
- Boards 1, 10, 20, 30, 40 and 50 were measured with a 3D solder paste inspection system (SPI)
- Volume, Height and Area data were collected

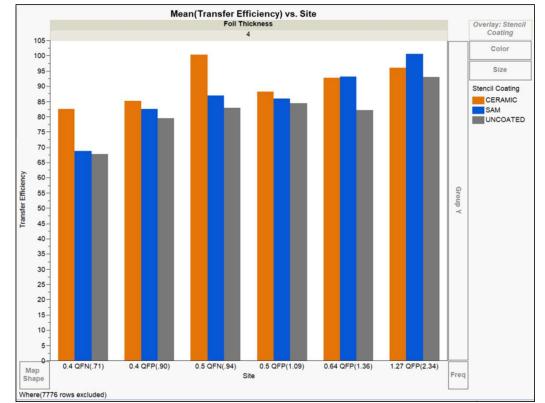

Printed Solder Paste Transfer Efficiency

Chip components 01005-1206

SUCCEED VELOCITY AT THE

of TECHNOLOGY

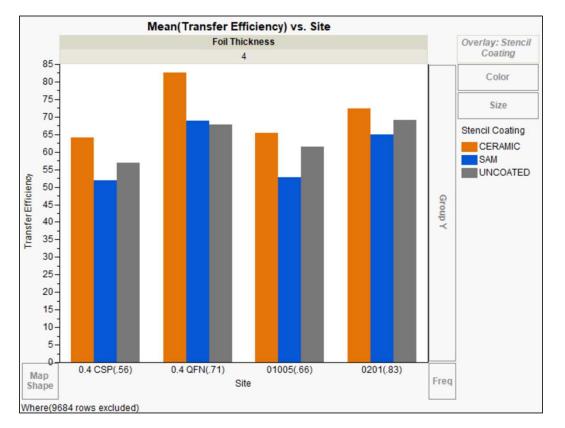
- **Small components**
 - Ceramic coating improves volume
 - SAM coating decreases volume
- Large components
 - Ceramic and SAM coating show slight to no volume improvement



Printed Solder Paste Transfer Efficiency

SUCCEED VELOCITY AT THE

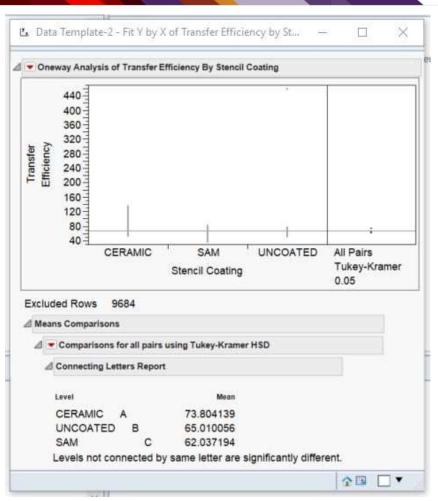
OF TECHNOLOGY


- **QFN and QFP Components**
 - Ceramic coating improves volume up to 0.5 QFN
 - **QFN's show greater** improvement with Ceramic coating than QFP **Components**
 - SAM coating improves volume on these larger component apertures as compared to uncoated stencils

Printed Solder Paste Transfer Efficiency

SUCCEED VELOCITY AT THE OF TECHNOLOGY

- Smallest AR Components
 - Ceramic coating improves volume
 - SAM coating decreases volume

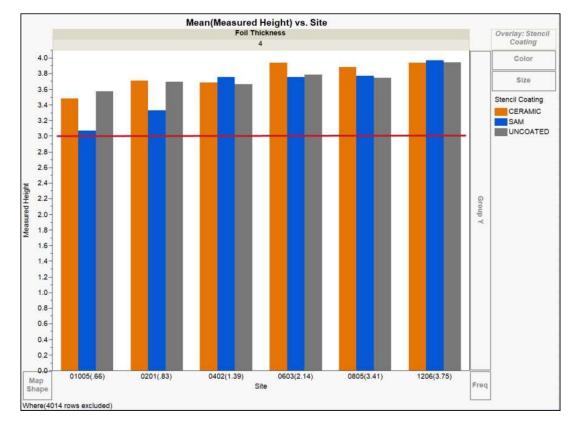


Printed Solder Paste Transfer Efficiency

SUCCEED VELOCITY AT THE

OF TECHNOLOGY

- **Tukey-Kramer HSD Analysis on Small Area Ratio components**
- Evaluates data to determine if it is significantly different
 - Ceramic coating mean TE is highest
 - SAM coating mean TE is lower than the uncoated stencil

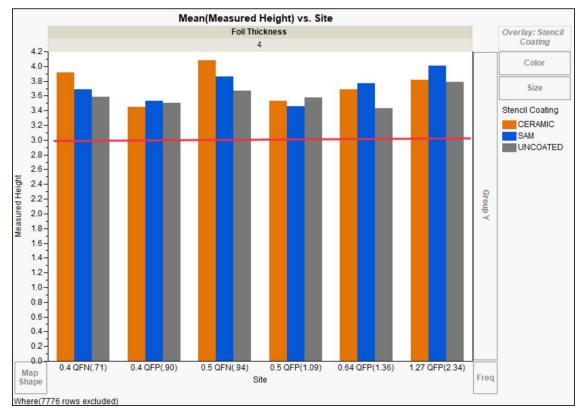


Printed Solder Paste Height

SUCCEED VELOCITY AT THE

of TECHNOLOGY

- **Chip Components**
 - 01005 and 0201 components show SAM print height less than uncoated and Ceramic coated stencil
 - 0402 thru 1206 components show no significant difference in mean print height for the coatings as compared to the uncoated stencil.

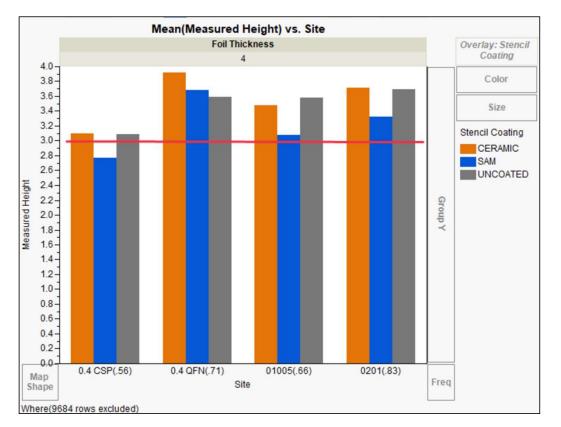

Printed Solder Paste Height

QFN and QFP Components

SUCCEED VELOCITY AT THE

OF TECHNOLOGY

- All components printed well over 3-mil minimum threshold
- Overall, both coatings show little or no improvement of mean height measurement as compared to the uncoated stencil

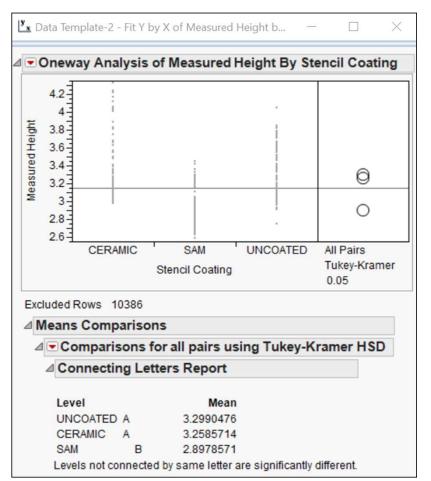


Printed Solder Paste Height

SUCCEED VELOCITY AT THE

OF TECHNOLOGY

- **Smallest AR Components**
 - Ceramic coating exhibits slight to no improvement in mean print height
 - SAM coating decreases height on 0.4 CSP and 01005 components below or just at the 3-mil minimum threshold

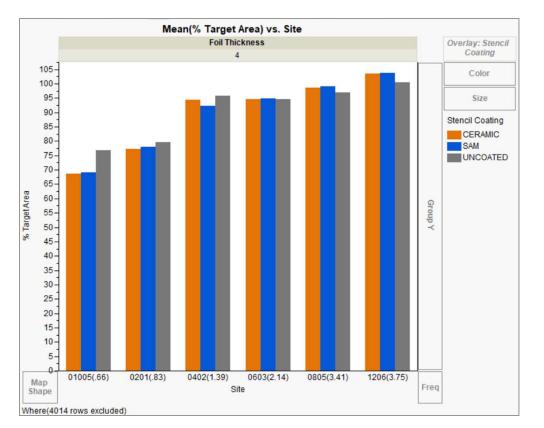

Printed Solder Paste Height

Tukey-Kramer HSD Analysis

SUCCEED VELOCITY AT THE

OF TECHNOLOGY

- 0.4 CSP and 01005 component mean print height
- SAM coating shows significantly different (lower) print height results when compared to the uncoated and Ceramic coated stencil.
- Ceramic coating mean height results are not significantly different than the uncoated stencil.

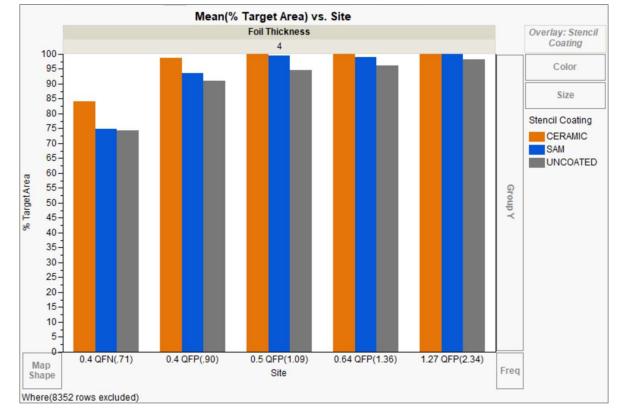

Printed Solder Paste Area

SUCCEED VELOCITY AT THE

- **Chip Components**
 - 01005 component has greater area percentage on uncoated stencil than coated stencils

OF TECHNOLOGY

Other components show no difference in printed area for coated and uncoated stencils

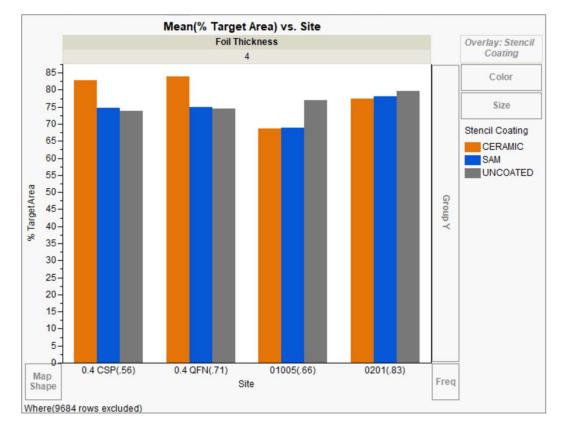

Printed Solder Paste Area

QFN and QFP Components

SUCCEED VELOCITY AT THE

OF TECHNOLOGY

- 0.4 QFN and QFP components exhibit higher printed area for ceramic coated stencil than SAM and uncoated
- 0.5 and higher QFP components show slightly higher printed area than the uncoated stencil for both nano-coatings


Printed Solder Paste Area

Smallest AR Components

SUCCEED VELOCITY AT THE

OF TECHNOLOGY

0.4 CSP and 0.4 QFN components exhibit higher printed area for ceramic coated stencil than SAM and uncoated

Conclusions

- There are 2 types of nano-coatings currently being used.
 - Self-Assembled Monolayer (SAM)
 - Ceramic
- When looking at printed paste volume, Ceramic nano-coatings improve transfer efficiency for 0.66 area ratio apertures and smaller (0.4 CSP and 01005) and SAM nano-coatings decrease printed paste volume when compared to uncoated stencils.
- When area ratios are larger than 0.66, adding SAM nano-coating and Ceramic nano-coating can result in slight increases in printed paste volume when compared to uncoated stencils.
- When area ratios are less than 0.66 (0.4 CSP and 01005), SAM nano-coating decreases the printed height when compared to uncoated stencils. Both Ceramic and uncoated stencil printed height are similar.

Conclusions

- For components larger than 01005, SAM and Ceramic nano-coatings produced printed paste height slightly higher than the uncoated stencil.
- Printed paste area was higher for the 01005 component on the uncoated stencil.
- Printed paste area was higher for the ceramic nano-coated stencil on the 0.4 CSP, 0.4 QFN and 0.4 QFP components than both the SAM nano-coated stencil and the uncoated stencil.
- When area ratios are less than 0.66 (0.4 CSP and 01005), it is recommended that Ceramic nano-coatings are used to improve repeatability and uniformity in the print process.
- When area ratios are more than 0.66, it is recommended that either Ceramic or SAM nano-coatings are used to improve repeatability and uniformity in the print process.

Thank You for Your Attention! Any questions?

Thank you!

Greg Smith BlueRing Stencils gsmith@blueringstencils.com