Thin Foil Printing in Today's Miniaturized World: Do Printing Rules Change?

Chrys Shea Shea Engineering Services East Greenwich, RI, USA chrys@sheaengineering.com

Greg Smith BlueRing Stencils Lumberton, NJ, USA gsmith@blueringstencils.com

Ray Welch Koh Young America Duluth, Georgia, USA ray.welch@kohyoung.com

ABSTRACT

As components get smaller, assembling them gets harder. To conquer the never-ending challenges of SMT processing, engineers rely on design rules to help nip problems in the bud. One of the most popular rules is the Area Ratio of stencil apertures, which helps predict the amount of solder paste released onto the PCB pad, as well the print process' repeatability.

A series of experiments were devised and executed to test the well-known Area Ratio rule at stencils with foil thicknesses of less than 4 mil (100 μ m). Different solder paste powder types and nanocoatings were also variables in the tests. The results will be discussed in terms of the currently accepted Area Ratio Rule, the Five Ball Rule and the Three Ball Rule.

Key words: Area Ratio, Stencil Printing, Thin foils, SMT Miniaturization, Nanocoating, SMD Pads

INTRODUCTION

A stencil aperture's **Area Ratio** (**AR**) is a simple calculation that divides the area of the aperture opening by the area of its wall. It was derived in the 1990's and compares the adhesive forces of the solder paste deposit on the PCB pad with the adhesive forces of the solder paste on the stencil walls. For the material to transfer efficiently, the forces holding it to the pad must overcome the forces holding it to the aperture walls. Therefore, calculating the relative areas represents the relative adhesive forces affecting solder paste release.

The amount of solder paste released from an aperture is referred to as **Transfer Efficiency (TE)** and expressed as a percent of total aperture volume. Stencil or solder paste release characteristics are often illustrated by plotting TE against AR.

AR guidelines were originally set at 0.66 as a minimum to ensure good (>80%) TE. Many of these original guidelines have been relaxed due to improvements in solder paste, stencil materials and

nanocoatings. With good materials, equipment and tooling, and robust printing practices, apertures with ARs as low as 0.50 can often be printed in production on 4 mil thick stencil foils with excellent results.

Maintaining ARs of 0.50 or greater can be difficult for the stencil designer. Miniaturization is now driving finer and finer features, which, in turn, is driving thinner foils to meet classic AR design rules. This raises the question:

Do classic design rules apply in the case of thin foils?

EXPERIMENT Design

Figure 1. Print-To-Fail Patterns and Aperture Shapes

A simple 2x2 factorial experiment was devised using the Print-To-Fail (PTF) patterns of the SMTA Miniaturization Test Vehicle¹ shown in Figure 1. The PTF patterns have pads that are square, circular or rectangular, solder mask- and non-solder mask-defined, in widths of 3 to 15 mils. Solder Mask Defined (SMD) pads are also referred to as simply "mask defined;" Non-Solder Mask Defined (NSMD) pads are also referred to as metal- defined or copperdefined. Each pad's corresponding apertures are either the same shape as the pad (S) or are square/rectangular with radiused corners (R). There are 32 datapoints on each print. Each dataset is made up of 20 prints, for a total of 640 datapoints for each combination of shape, definition, size and aperture geometry in the database.

Four stencils were tested: 2 and 3 mil thickness, with and without nanocoating. $^{\rm 3,4}$

The solder paste used in this test was Indium 8.9 HF Type 5-MC. The powder particle size distribution was the standard 15-25 μ m diameter. Type 4 was tried but showed too much variation on thin foils to be considered acceptable; therefore, the results for the Type 5 solder paste are analyzed and presented.

Execution

Print tests were performed in Koh Young America's demo room in Duluth, GA, using the following equipment set:

- Printer: MPM Momentum BTB
- Support tooling: Quick Tool; 3 modules
- Clamps: EdgeLoc with retracting top foils
- Squeegees: MPM FP100, 250 mm length
- Stencils: 2 and 3 mil BlueRing Nano-Slic Gold and Uncoated Fine Grain (Slic) stencils
- SPI: Koh Young 10 um aSPIer3
- SPI Height Threshold: 20 μm

The print parameters were:

- Speed: 30 mm/sec
- Pressure: 7.0 kg
- Separation Speed: 5.0 mm/sec
- Separation Distance: 3.0 mm

The under-stencil wipe parameters were:

- Speed: 30 mm/sec
- Sequence: wet/vac/vac or wet/vac/vac/dry
- Frequency: 1 (after each print)

Each test run began with 4–6 knead strokes to assure the solder paste reached its working viscosity and 2–7 setup prints to verify proper print performance and paste alignment before running the 20 data-producing prints. Execution time for the tests were approximately 30 minutes each, with continuous printing, under wiping and inspection.

Analysis

Data was exported to a *.csv file and imported to Excel for manipulation. A pivot table was created to review the solder paste volumes, TEs and CVs. Refer to Appendix A for details on the data manipulation methods.

Process Capability and the Coefficient of Variation

The Coefficient of Variation (CV, CoV or CofV) is calculated as the standard deviation of a population divided by its mean. Applied to solder paste deposits, CV represents the spread of the volume, height, area or offset data. Because the average volumes of solder paste deposits vary based on many input variables, basic standard deviations should not be used to evaluate different distributions of data. Expressing the variation as a percent of the average normalizes it for better comparison.

As solder paste deposits become smaller, minimizing their variation becomes more critical:

- As passive devices get smaller, they are more prone to positional, rotational or tombstone-type defects related to print quality.
- As integrated circuit packages get smaller and leadless, they are more prone to Head-in-Pillow, insufficient solder joints, voids and intermittent opens related to print quality.

Controlling the variation in print volumes limits the opportunities for defective solder joints and their associated rework or failure costs.

A widely accepted guideline for solder paste deposit CVs is:

- <10%: preferred
- 10-15%: acceptable
- >15%: unacceptable

Figure 2. Normal Distribution as it relates to solder paste volume variation

These guidelines are based on principles of Statistical Process Control (SPC). Assuming a normal distribution of data as seen in Figure 2, 99.7% of the data should fall within \pm -3 standard

deviations of the mean. If we apply a typical SPI control limit of +/-50%:

- CVs of 10% will produce 99.7 % of deposits within +/-30% of the target volume, leaving plenty of room for outliers or special causes of variation.
- CVs of 15% will produce 99.7% of deposits within +/-45% of the target volume, leaving little room for variation.
- CVs of 16.7% or higher will produce deposits outside the control limits, indicating an out-of-control process.²

In this study, CVs were analyzed first to distinguish datasets worth investigating from those that were not. Datasets with CVs of 15% were reviewed prior to inclusion into the database.

Disqualification of the smallest deposits

Upon review of the data and PCBs, 3 and 4 mil deposits were removed from the results. Their CVs were all greater than 15%, and inspection of the PCBs revealed that many of the NSMD pads less than 5 mils were missing from the bare PCBs. This did not come as a surprise, as features that size present challenges to fabricators, who were granted waivers for features 5 mils or less.

Figure 3. Missing pads in PTF test patterns

The pivot table results of the different combinations of foil thickness, coating, pad shape and pad definition and the calculated CVs can be seen in Appendix B.

Unacceptable levels of variation were demonstrated by the 3 and 4 mil feature sizes; further statistical analysis was performed on the data from pads 5 mils and larger.

RESULTS

The SPC Run Charts shown in Table 1 illustrate the effects of pad definition.

There is a sharp contrast in print variation between the solder mask defined and the copper-defined pads. In the best-case printing scenario of solder mask defined square pads, the CV of 12% indicates that 5 mil features can be printed repeatably using a 2 mil coated foil; the CV of 11% indicates the same for a capability with a coated 3 mil foil.

The CVs for copper defined pads were over 20% for both 5 and 6 mil features. The process of printing on copper defined pads did not show preferred capability (CV < 10%) until feature sizes of 7 mils, even with square pads, which performed better than round ones.

Table 1. Run charts of print data for square SMD and NSMD pads

Figure 4. TE chart for 2 mil coated foil

Figure 5. TE chart for 3 mil coated foil

The transfer efficiencies also vary greatly between solder mask and copper defined pads. Solder mask defined pads offer better gasketing than copper defined ones, and limit the amount of "squeeze out," or excess solder paste to transfer from the aperture to the PCB.

Figures 4 and 5 show the contrast in TE between the two pad designs for the 2 and 3 mil foils, respectively.

Regardless of foil thickness, the TE curves both show the same trends regardless of pad or aperture shape: for mask defined pads, TE's showed typical behavior, but on copper defined pads, excess paste was the rule rather than the exception.

On solder mask defined pads, TE is approximately:

- 70% at 5 mil
- 80% at 6 mil
- 90% at 7 mil
- 96% at 8 mil

These are all reasonable transfer rates with preferred or acceptable CVs.

On copper defined pads, TEs averaged:

- 140% at 5 mil
- 140% at 6 mil
- 130% at 7 mil
- 125% at 8 mil

These TE rates, coupled with highly unacceptable CVs on copper defined pads most likely indicate a lack of good gasketing between the pad and the stencil.

Figure 6. Main Effects Plot and Pareto Diagrams Presented at SMTA International 2021

The run charts also show unanticipated spread in the data for prints 3, 13 and 19. The effects are more pronounced on the smaller features. This will be discussed in detail in the discussion section addressing pad definition.

The Main Effects Plot shown in Figure 6 demonstrates the influence of the individual factors on print volume repeatability. The axis values have been omitted to focus on the relative impact of each and the inputs that minimize it.

The #1 factor influencing print repeatability was the stencil coating. Feature size was a close second, followed by pad definition. With lesser influence, the 2 mil foil produced more consistent print volumes than the 3 mil foil. Pad shape and aperture corner type had negligible influence on print variation.

DISCUSSION

Top Factors in Variability

As indicated in Figure 6, the stencil coating is the top factor in minimizing variation. It is also obvious in the side-by-side comparisons of TE and CV in appendix B, which show that the coating provides better print repeatability (lower CV) for every pad design configuration.

Although not quantified, cleanability was a considerable factor noticed during the testing. It was observed that the coated stencil released the paste to the automatic underwiping system far better than the uncoated one. The thin layer of smeared solder paste particles and flux that was left behind on the stencil after the auto wipe likely factored into its poorer print results.

The influence of pad size – the fact that the bigger the feature the easier it is to print – is related to AR, but does not necessarily follow general AR rules.

Pad Definition

Figure 7. Comparison of PCB Pad definition

Figure 7 shows a basic diagram comparing the two methods of designing PCB solder pads. Non-Solder Mask Defined (NSMD) pads are etched onto the PCB at their nominal size. It is not uncommon however, to find pads over etched – *or undersized* – by up to 2 mils.

Figure 8. DFX impacts of pad definition

Figure 8 further describes features of the different types of pad definition. Given that smaller pad sizes are more susceptible to overetching, growing the copper size by 6 mils makes it much easier for the fabricator to etch – even it if gets overetched by (an acceptable) 2 mils, there is still enough room for the solder mask to encroach on all sides. When all edges of the pad are covered with solder mask, the mask provides an excellent gasketing surface for the stencil, resulting in less variation in print quality, and typically, slightly higher volumes.

When pads are metal defined they are naturally harder to gasket to than mask defined pads, but their propensity to be overetched exacerbates the gasketing problem. Poor gasketing of NSMD pads leads to excess solder paste deposition, as seen in Figures 4 and 5.

Another deleterious effect of overetched PCB pads is their impact on true AR. Recall that AR is calculated as the ratio of the area of the aperture opening to its walls. This calculation is based upon the assumption that the aperture opening fully contacts the PCB pad. When the pad is smaller than the stencil aperture, it does not offer as much area for the solder paste to stick to, thereby reducing the true AR and introducing additional variation to the process.

Traditional pad design, especially for BGAs, generally trends toward NSMD pads, because the solder mask relief enables molten solder to wrap around the edges of the pad, giving the solidified joint more shear strength than with SMD pads (Figure 8). For larger BGAs with feature sizes that are more easily printed and experience greater displacement during thermal expansion, NSMD pads are still generally preferred But in the case of very small features, mask defining them can actually add shear strength between the pad and the PCB due to the larger area of the pad and the reinforcement of the mask. As previously mentioned, the fabrication notes for this test PCB allow a waiver for pads 5 mils and smaller. Inspection of the incoming PCBs showed many were missing their 3 and 4 mil NSMD pads (Figure 3) and some of the 5 mil NSMD pads were barely visible. The run charts in Table 1 show excessive noise for print numbers 3, 13 and 19, particularly on the NSMD pads. The issue appears to resolve as the feature sizes get larger, and only appears on the smallest SMD pads. The source of the noise in these three prints could likely be attributed to overetch of the pads on those specific PCBs.

Aperture Shape

Aperture shape had very little impact on print quality. This appears to contradict prior data generated on larger feature sizes and generally accepted design rules relating to radiusing aperture corners to improve paste release and repeatability.

Figure 9. The effect of rounding aperture corners as aperture sizes shrink.

Typically, stencil manufacturers put a 2 mil radius on square apertures, and often apply the "squircle" aperture to round pads. At feature sizes under 8 mil, the radius is 25% of the side length of the square. As the squares get smaller and 50% of their side length is part of the corner radii, the squircle shapes become more circular than square, as seen in Figure 9, and the performance difference becomes relatively inconsequential.

Pad Shape

In a trend similar to the contradictory nature of the aperture shape results, pad shape had very little influence on print variability. The advantages of square pads (from a print perspective) also appear to dwindle as their size shrinks.

The Area Ratio Rule

Area ratios increase as foil thicknesses decrease. But with foils less than 4 mils thick, the difference is more dramatic.

Figure 10. AR of small features increases dramatically as the foil gets thinner.

An 8 mil feature size has an AR of 0.50 on a 4 mil foil, 0.67 on a 3 mil foil, 1.0 on a 2 mil foil! Similarly, the AR for a 6 mil feature climbs from 0.5 on a 3 mil foil to 0.75 on a 2 mil foil!

With respect to print volume variation, size was a greater factor than AR. In many cases of mask defined pads, variation was acceptable or preferred for features 5 mils and larger.

With respect to TE, pad definition had a far greater effect on print capability than AR.

In the best cases of SMD pads and coated stencils, 5 and 6 mil features were the smallest to print successfully – on both 2 and 3 mil foils. The lowest AR of this combo was 0.42 and the highest was 0.75. However, in other scenarios, acceptable printing wasn't achieved until 8 or 9 mil feature sizes, with much higher ARs.

The Area Ratio Rule of 0.60 or higher cannot be applied to all situations when using thinner foils. Considering that foil thickness has 4 times the influence of aperture size on AR (the algebraically reduced AR calculation for circles is D/4t, where D is the diameter of the circle and t is the foil thickness and similar for squares as S/4t, where S is the side length of the square and t is the foil thickness), AR may no longer be the best overall indicator of solder paste release.

In this test, pad size and definition are the key design factors, and stencil coating is the key manufacturing factor. Size may be related to the three- and five-ball rules, yet to be discussed, but pad definition is related to design. Having the correct pad contact area to produce a true AR scenario and the benefit of good gasketing makes the biggest difference in printability of these fine features with thin foils.

When considering stepping a 4 mil stencil down to 2 or 3 mils to accommodate fine features, it should be noted that in these tests, both the 2 and 3 mil coated foils printed relatively comparably. Given similar results between the two thicknesses and faced with a choice, an assembler might consider stepping down to 3 mils as opposed to a 2 mils, as it would result in a more robust stencil with a longer production life.

Three Ball Rule

Figure 11. The "Three-Ball" Rule

The Three Ball Rule states that a stencil's thickness should be at least three times the diameter of the *largest* ball. A common corollary states that it should be at least three times larger than the *average* ball diameter. They are illustrated in Figure 11.

The Type 5 solder paste had the majority of its particles in the 15-25 micron range. Assuming the largest is 25 μ m and the median is 20 μ m, both scenarios can be theoretically tested:

- 3*25=75µ, or 3 mil
- 3*20=60µm. or 2.4 mil

The thinnest foil to produce good prints was 2 mils. Again, it appears that pad design and stencil coating enable this capability. For the uncoated stencils, the 2 mil printed better than the 3 mil for SMD pads; for the coated stencils, the 2 and 3 mil foils both printed comparably on the SMD pads.

The three ball rule does not appear to apply to SMD pads in this test, perhaps because the mask definition creates a "well" that effectively increases the depth of the aperture with respect to solder paste filling, but does not negatively influence release from the aperture.

Five Ball Rule

Figure 12. The "Five Ball" Rule

The Five Ball Rule states that a stencil's minimum aperture width should be at least five times the diameter of the largest ball. As with the Three Ball Rule, an existing corollary states that it should be at least five times larger than the average ball diameter, as seen in Figure 12.

So again, assuming the largest particle has a 25 μ m diameter and the median has a 20 μ m diameter, both scenarios can be theoretically tested:

- 5*25=125 µm, or 5 mil
- 5*20=100 μm, or 4 mil

The finest feature to print successfully on SMD pads, was 5 mils. Even in the best-case scenario, the 4 mil pads demonstrated too much variation to be considered valid data worth analyzing.

To interpret the Five Ball Rule with respect to thin foil printing, this data indicates that the largest ball diameter should be applied. However, it can only be applied to SMD pads, as NSMD pads produced unacceptable print volume variation.

CONCLUSIONS

In the context of solder paste stencil printing, reducing variation has always been as important as maintaining high transfer rates. However, in leading edge electronic miniaturization, where excess variation is the root cause of most soldering problems, it is arguably more important than average paste transfer rates. This analysis reviewed transfer rates, actual volumes and variation, with the focus on factors that minimize variation.

The factors that minimize variation can be grouped into two distinct categories: *Design* and *Manufacturing*.

With respect to product design, Solder Mask Defined pads and the sizes of those pads had the largest influence on repeatability. SMD pads are easier for PCB fabricators to make, and easier for SMT assemblers to print. It is highly recommended that any PCB features smaller than 8 mils should be mask defined (when using a Type 5 solder paste), and as pad sizes get smaller, the positive effects of mask defining the pads becomes more obvious.

With respect to manufacturing, coating the foil with the flux-repelling ceramic nanocoating has the largest influence on reducing variation. In fact, on Non-Solder Mask Defined (NSMD) pads, uncoated stencils were not capable of meeting the preferred CV metric of <10% for any features 8 mils or smaller, and in only one situation met the acceptable value of <15%. Uncoated stencils were also very difficult to clean using automatic underwipe.

Foil thickness appeared to have a considerable effect on print variation; however, a very profound effect was seen on the

uncoated stencils, and detailed review of the actual results between 2 and 3 mil coated foils are extremely close with respect to both actual volumes and CVs.

With respect to the traditional guidelines of The Area Ratio Rule, the Three Ball Rule and the Five Ball Rule, some principles may still apply, and some may not.

In the context of SMD pads and coated stencils, an AR of 0.6 or higher can be applied to the 2 and 3 mil stencils. Both fell a little shy of 80% TE goals, but met CV goals of <10%, indicating viable processes that could likely be optimized with further statistical analysis of the stencil design and processing parameters.

The Three Ball Rule was tested with both the largest and average sized solder particle and did not comply with the 3X guidance. It predicted minimum foil thicknesses of 3.0 and 2.4 mils, respectively, for the largest and average size particles. The thinnest foil to print successfully was actually 2 mils thick, thinner than the rule predicts. It should be noted again that the difference between SMD and NSMD pads was pronounced, and the successful printing occurred on the SMD pads. SMD pads may offer an advantage in aperture filling due to the extra depth they provide, but do not offer a disadvantage in paste release, which is based on stencil wall contact.

The Five Ball Rule may still partially apply. The finest feature to print repeatably was 5 mils, or $125 \,\mu\text{m}$, exactly 5X the diameter of the largest ball, and only with coated stencils. None of the 4 mil features printed repeatability, even when mask defined and with a coated stencil.

DFX Takeaways:

- The best thing that designers can do to improve the producibility and reduce the cost of miniaturized electronics, is to *solder mask define the PCB pads*.
- The best thing that a PCB assembler can do to limit variation and improve yields is to *nanocoat the foils, no matter how thin they are.*

POTENTIAL FUTURE WORK

Similar tests using the same solder paste formulation⁵ have been performed with Type 4 solder paste and 4 mil foils. Those tests have indicated that the T4/4mil combination

repeatably prints (CV<10%) NSMD pads down to 10 mil, and SMD down to 9 mil and in some cases, 8 mil. Because the data were generated on different equipment sets at different locations and times, the data cannot be directly compared. Ideally, however, a consistent data set that compares performance of T4 with 4 mil foil and T5 with the 4 mil foil can help determine the best print scenarios for features in the 6-10 mil size range.

Smaller particle sizes present greater reflow challenges. If possible, on future print tests, a few extra boards should be printed at the end of the test and reflowed to help determine fusion (non-graping) characteristics of the solder paste, and the possible effects of inerting the reflow environment.

Ultimately feature sizes will continue to shrink, and technology will continue to develop. Type 5.5 and 6 solder pastes will probably be tested in the near term, as will newer foil materials that can retain specific print properties with lower profiles.

Type 5 solder paste presented underside cleaning issues with uncoated stencils in this test. In other tests, it has also presented similar issues in off-line stencil cleaning and misprinted board cleaning. Studies comparing the cleanability of wet T4 and T5 solder pastes would be beneficial in preparing for the inevitable transition to finer powders as electronic assemblies continue to shrink.

REFERENCES

[1] D. Dixon, et al "Development of a Solder Paste Test Vehicle for Miniaturized Surface Mount Technology," *Proceedings of APX/EXPO 2018.*[2] R. Welch, "SPI Data Analysis, Print Process Characterization/Optimization," Presentation, April, 2019
[3] M. Bixenman, et al, "Quantifying the Improvements in the Solder Paste Printing Process from Stencil Nanocoatings and Engineered Under Wipe Solvents" International Conference on Soldering and Reliability, 2014
[4] N. Agarwal, "Evaluation of Stencil Technology for Miniaturization" Proceedings of SMTAI 2016
[5] C. Shea, and R. Lawrence, "Solder Paste Qualification Testing for EMS Production," Proceedings of SMTA International 2017

APPENDIX A Export and Analysis of SPI data

Step 1: Select Data

Note: The directions given here are for the SPI system used in this test. Users should consult with their manufacturer for specific export directions. In the SPC setup menu, choose the data and format to export:

Exporting just the data needed limits the size of the database, and reduces the cleanup work during analysis. Furthermore, exporting in mils precludes the need to convert it once in Excel or Minitab, and presents more user-manageable values versus inches or µms.

Presented at SMTA International 2021

Step 2: Export Data

- Go to "ListView" in the SPC program
- Select the Start and End Dates and click "View"
- Locate and select the desired records
- Click "Result Export"
- Repeat for each of the individual runs (stencil thickness, coating)

Home								
	Analysis Search RealTime	Tools Help						
)				
					3	ST		
/iew PCBView B	Barcode DefectSPC MultiSPC Defect	View Histogram Tr	end Defe	ctList YieldV	iew Setup	Supervis	or	
/iew PCBV	ew SPC	Chart Review	Y	eld & Defec	t Setup	User		
	^							
SearchLine	● 1Day C 1Week C 1Month	Set Time 🗔	obFileName	1			User	
1 🖌				L				
	Start Date : 2021-08-02 00.	.00.00 🖵 L	ot			- 1 P	Loname	View
earch by Linewane	End Date : 2021-08-27 💌 23	59:59 🌩 🗆 B	larCode ∏	All Line				**************************************
1-10-01 01:58:26		Select Search	Result :	GOOD	WARNING	FAIL	PASS	t Selected List Count : 20
LINE	IDNO PCBNAME	DATE Sta	artTime E	IndTime	USER	RESULT	JobFileName	Barcode LOT
125 Local	409 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 8:5	51:43 AM 8	8:51:50 AM	SV	FAIL	C: (Kohyoung Job (SMTA V2 (SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG Setup
120 Local	411 SMTA V2 PTF Bottom V2 2 mile	2021-08-24 8:5	14:19 AM	04:26 AM	SV	PAIL	C: Kohyoung Job SMTA V2/SMTA V2/SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG Setup SMTA V2 PTF Bottom V2 2 mile NSG Setup
128 Local	412 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 9:0	9:58 AM	: 10:05 AM	SV	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG Setup
129 Local	413 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 9:1	15:40 AM 9	:15:47 AM	sv	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG Setup
130 Local	414 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 9:1	19:31 AM 9	19:38 AM	SV	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG Setup
131 Local	415 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 9:4	45:16 AM 9	:45:23 AM	SV	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG Setup
132 Local	416 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 9:4				PASS	C: \Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
133 Local	417 SMTA V2 PTF Bottom V2.2 mils	2021-08-24 9:4	49:04 AM 9	0:49:11 AM			C: Kohyoung Job SMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
134 Local	418 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 9:1	50:58 AM	0:51:05 AM		PASS	C: Kohyoung Job SMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
135 Local	419 SMTA V2 PTF Bottom V2 2 mis	2021-08-24 9:	52:22 AM	1:52:29 AM		PASS	C: Kohyoung Job (SMTA V2/SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
136 Loca	420 SMTA V2 PTF Bottom V2 2 mis	2021-08-24 91	53:41 AM	1:53:48 AM		PAIL	C: Konyoung Job (SMTA V2/SMTA V2 PTF Bottom V2 2 mils.mob	SMTA V2 PTF Bottom V2 2 mils NSG
138 Local	422 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 9:5	57:09 AM	:57:16 AM		PASS	C: Kohyoung 200 BMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
139 Local	423 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 9:5	58:38 AM	:58:45 AM		PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
140 Local	424 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:02:23 AM	0:02:30 AM	sv	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2-2 mils NSG
141 Local	425 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:03:38 AM	0:03:45 AM	SV	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
142 Local	426 SMTA V2 PTF Bottom V2 2 mis		:05:08 AM				C: \Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
143 Local	427 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:06:28 AM 1	10:06:35 AM		PASS	C: Kohyoung Job SMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
144 Local	428 SMTA V2 PTF Bottom V2 2 mis	2021-08-24 10	:08:30 AM	L0:08:37 AM		PASS	C: Kohyoung Job (SMTA V2/SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
145 Local	429 SMTA V2 PTF Bottom V2 2 mis	2021-08-24 10	:10:07 AM	0:11:42 AM		PASS	C: Kohyoung Job SMTA V2/SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mills NSG
147 Local	431 SMTA V2 PTF Bottom V2 2 mis	2021-08-24 10	-12-51 AM	0-12-58 AM		PASS	C: Wohyoung Job SMTA V2/SMTA V2 PTF Bottom V2 2 mils mdb	SMTA V2 PTF Bottom V2 2 mile NSG
148 Local	432 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:14:01 AM	0:14:08 AM		PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
149 Local	433 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:15:42 AM	0:15:49 AM		PASS	C: Kohyoung Job SMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
150 Local	434 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:17:13 AM	0:17:20 AM	SV	PASS	C: \Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
151 Local	435 SMTA V2 PTF Bottom V2.2 mils	2021-08-24 10	:18:27 AM 1	10:18:34 AM	SV	FAIL	C: \Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG
152 Local	436 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:31:20 AM	L0:31:27 AM	SV	PASS	C: Kohyoung Job SMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
153 Local	437 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:32:13 AM 1	10:32:20 AM	sv	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
154 Local	438 SMTA V2 PTF Bottom V2 2 mis	2021-08-24 10	:33:30 AM	0.24.00 AM	SV	PASS	C: Konyoung Job SMTA V2/SMTA V2 PTF Bottom V2 2 mis.mdb	SMTA V2 PTF Bottom V2 2 mis NSG 10 um
156 Local	440 SMTA V2 PTF Bottom V2 2 mile	2021-08-24 10	:34:44 AM	0:34:51 AM	SV	PASS	C: Kohyoung 200 pm1A 12 pm1A 12 pm1 A 12 pm1 A 12 pm C: Kohyoung 10b (SMTA 12 SMTA 12 PTF Bottom 12 2 mile mdb	SMTA V2 PTF Bottom V2 2 mile NSG 10 um SMTA V2 PTF Bottom V2 2 mile NSG 10 um
157 Local	441 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:35:18 AM	0:35:25 AM	SV	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
158 Local	442 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:35:57 AM	10:36:04 AM	SV	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
159 Local	443 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:37:06 AM	10:37:13 AM	SV	PASS	C: Kohyoung Job SMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
160 Local	444 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:39:25 AM 1	10:39:32 AM	SV	PASS	C:\Kohyoung\Job\SMTA V2\SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
161 Local	445 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:39:57 AM	10:40:04 AM	SV	PASS	C: Kohyoung Job SMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
162 Local	446 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:40:35 AM 1	10:40:42 AM	SV	PASS	C: Kohyoung Job SMTA V2 SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
163 Local	447 SMTA V2 PTF Bottom V2 2 mils	2021-08-24 10	:41:41 AM 1	10:41:48 AM	SV	PASS	C: Kohyoung Job SMTA V2/SMTA V2 PTF Bottom V2 2 mils.mdb	SMTA V2 PTF Bottom V2 2 mils NSG 10 um
164 LOCAL	440 SMTA V2 PTF Bottom V2 2 mis	2021-08-24 10	-42-19 AM	0:42:21 AM	SV	PASS	C: Wohyoung Job SMTA V2/SMTA V2 PTF Bottom V2 2 mis.mdb	SMTA V2 PTF Bottom V2 2 mis NSG 10 um
16.5 0.00	TTP SMITA V2 FIF DULUMI V2 2 MIS	2021-00-24 10		101-10:20 AM	24	r 433	C. Youryoung you pint A 12 pint A 12 PTF buttom V2 2 mils.mob	SIMINA VZ PIE DOLLOIN VZ ZIMIS INSG 10 UM
165 Local								
165 Local					e			

Step 3: Import Data to Excel

The files are in a *.CSV format. In Excel, click on Open, and choose "All Files" from the dropdown in the lower right corner. This will allow you to see the CSV files.

Double click the file you want to import or click on it and then click "Open."

nize * New folde	r					· ·
Download ^	Name	Date modified	Туре	Size		
Export SPI Data f	Old databases	10/7/2021 12:48 PM	File folder			
Paper	2 and 3 mil bare and coated consolidated REV 6 (version 1)	10/7/2021 12:49 PM	Microsoft Excel W	110,852 KB		
Microsoft Excel	2 and 3 mil bare and coated consolidated	9/7/2021 2:22 PM	Microsoft Excel W	108,296 KB		
VIICIOSOTI EXCEL	2 mil bare	8/29/2021 4:53 PM	Microsoft Excel Co	24,849 KB		
OneDrive	2 mil coated	8/29/2021 4:58 PM	Microsoft Excel Co	25,093 KB		
This PC	3 mil Bare	8/29/2021 4:54 PM	Microsoft Excel Co	24,387 KB		
2D Objects	3 mil coated	8/29/2021 5:01 PM	Microsoft Excel Co	25,188 KB		
50 Objects	Copy of 2 and 3 mil bare and coated consolidated REV 4 - Compa	9/16/2021 1:21 PM	Microsoft Excel W	47 KB		
Desktop	SMTA V2 PTF Bottom KYA 2 mils_1016_0747_16_20um_Nano-Slic	8/11/2021 5:14 PM	Microsoft Excel Co	18,010 KB		
Documents	SMTA V2 PTF Bottom V2 2 mils No Coating HT 20 um_0826_1326	8/29/2021 4:51 PM	Microsoft Excel Co	24,849 KB		
Downloads	SMTA V2 PTF Bottom V2 2 mils NSG HT 20 um_0824_0947_20 mo	8/29/2021 4:50 PM	Microsoft Excel Co	25,093 KB		
Music	SMTA V2 PTF Bottom V2 3 mils No Coating HT 20 um_0826_0730	8/29/2021 4:49 PM	Microsoft Excel Co	24,387 KB		
Pictures	🔯 thee and five ball rule	9/16/2021 9:30 AM	Microsoft Excel W	10 KB		
Videos						
Local Disk (C:)						
vetwork						
File and	CMTA V/2 DTE Rattern KVA 2 mile 1016 0747 16 20um Name Clie DEK (1)				1	1. 61

Importing and opening may take a few moments, as the file sizes are generally large.

As soon as the file is imported, save it as an Excel Workbook with the term "_modified" added after the filename. This is in case the file gets corrupted; the original data will still be safe.

Depending on the size of the database and the speed of the computer, saving may also take a few moments.

s	MTA V2 PTF Bottom V2 2 mils NSG HT 20 um_0824_0947_20 modified	🛆 Chrys Shea 🥵 🏶 🙂 🙁 ? — 🗗
Save As		
L Recent	↑ ▷ Documents > Thin Foils > DataBase SMTA V2 PTF Bottom V2 2 mils NSG HT 20 um_0824_0947_20 modified	
Personal	Excel Workbook (*.xlsx)	▼ 🖓 Save
OneDrive - Personal chrysshea@gmail.com	More options	
Other locations	Name 1	Date modified

Step 4: Manipulate and Consolidate

								7041			110.00
	A	В	С	D	E	F	G	Н		J	K
1	Foil Thickne	Coating	Panel	Componen	PadID	Volume(%)	Height(mil)	Area(%)	OffsetX(mi	OffsetY(mil	Volume(mi
2	2	Coated	1	PTF1_CICU	1	50.985	1.268	80.447	0.669	-1.285	8
5	2	Coated	1	PTF1_CICU	2	34.268	1.182	57.993	0.664	-1.273	5
4	2	Coated	1	PTF1_CICU	3	35.653	1.116	63.89	0.618	-1.532	5
5	2	Coated	1	PTF1_CICU	4	74.278	1.383	107.424	0.339	-0.401	11
6	2	Coated	1	PTF1_CICU	5	132.681	1.862	142.551	0.517	-0.307	34
	2	Coated	1	PTF1_CICU	6	121.139	1.91	126.86	0.27	-0.736	31
В	2	Coated 🥊	1	PTF1_CICU	7	126.52	1.925	131.482	0.095	-0.897	33
Ð	2	Coated	1	PTF1_CICU	8	108.457	1.838	117.99	0.399	-0.534	28
0	2	Coated	1	PTF1_CICU	9	160.234	2.269	141.208	0.448	-0.353	65
1	2	Coated	1	PTF1_CICU	10	163.412	2.404	135.936	0.221	-0.555	66
2	2	Coated	1	PTF1_CICU	11	133.387	2.112	126.302	0.546	-0.517	54
3	2	Coated	1	PTF1_CICU	12	118.754	1.981	119.917	0.196	-0.546	48

Add columns for stencil (foil) thickness and coating to each individual database.

Rename each individual database according to its contents (stencil thickness, coating), then combine them into a new workbook. Excel can handle up to 1,048,576 rows of data.

This PC	> Documents > Thin Foils > DataBase	~	Ū	○ Search DataBas	se
<u>^</u>	Name	Date modified		Туре	Size
	📕 Old databases	10/7/2021 12:48 PM		File folder	
	2 and 3 mil bare and coated consolidated	9/7/2021 2:22 PM		Microsoft Excel Work	108,296 KB
	🔊 2 mil bare	8/29/2021 4:53 PM		Microsoft Excel Com	24,849 KB
r	2 mil coated	8/29/2021 4:58 PM		Microsoft Excel Com	25,093 KB
r i	💶 3 mil Bare	8/29/2021 4:54 PM		Microsoft Excel Com	24,387 KB
r i	3 mil coated	8/29/2021 5:01 PM		Microsoft Excel Com	25,188 KB
	Copy of 2 and 3 mil bare and coated consolidated REV 4 - Co	9/16/2021 1:21 PM		Microsoft Excel Work	47 KB
	SMTA V2 PTF Bottom KYA 2 mils_1016_0747_16_20um_Nano	8/11/2021 5:14 PM		Microsoft Excel Com	18,010 KB
f	SMTA V2 PTF Bottom V2 2 mils No Coating HT 20 um_0826_1	8/29/2021 4:51 PM		Microsoft Excel Com	24,849 KB
	SMTA V2 PTF Bottom V2 2 mils NSG HT 20 um_0824_0947_20	8/29/2021 4:50 PM		Microsoft Excel Com	25,093 KB
	SMTA V2 PTF Bottom V2 3 mils No Coating HT 20 um_0826_0	8/29/2021 4:49 PM		Microsoft Excel Com	24,387 KB

Step 5: Parse

Look at Column D in the spreadsheet. The Component ID is a code for the location, pad shape, pad definition, aperture corners, CAD identifier, aperture size and replicate. It should be parsed into separate columns, using the "Text to Columns" function in Excel.

Note: Any rows of data with blank Component IDs, such as the large QFP used to verify print quality, should be deleted.

First, make room for the parsed data by inserting six columns to the right of Column D.

• Highlight columns E through J

F	ile H	ome	nsert	Drav	V	Page Layo	out Form	nulas	Data	a Review	v View	Help			
(Di	Get ata ~ II F	From Text/CSV From Veb From Veb From Table/Range Get & Transform Data				Refresh All ~	Que Prop C Edit Queries &	ries & C erties Links Connec	Connections	Stoc	ks Curre Data Types	encies v	2↓ ZA Z↓ Sort	Filter C	
E1			×	~	fx	PadID						-	-	-	
	A	В		с			D 🦯		E	F	G	н	1	J	-
1	Foil Thic	ne Coatir	g	Panel	C	omponent	D	Padl)	Volume(%)	Height(mil)	Area(%)	OffsetX(mi	OffsetY(mil	Volum (m
2		2 Coate	ł		1 P	TF1_CICU_I	R-03-03A		1	50.985	1.268	80.447	0.669	-1.285	
3	_	2 Coate	ł		1 P	TF1_CICU_I	R-03-03B		2	34.268	1.182	57.993	0.664	1273	
4	-	2 Coate	4		1 P	TF1_CICU_I	R-03-03C		3	35.653	1.110	- 03.89	0.618	-1.532	!
5		2 Coate	4		1 P	TF1_CICU_I	R-03-03D		4	74.278	1.383	107.424	0.339	-0.401	1:
6	-	2 Coate	ł		1 P	TF1_CICU_I	R-03-04A		5	132.681	1.862	142.551	0.517	-0.307	34
7		2 Coate	d .		1 P	TF1_CICU_I	R-03-04B		6	121.139	1.91	126.86	0.27	-0.736	3:
8		2 Coate	3		1 P	TF1_CICU_I	R-03-04C		7	126.52	1.925	131.482	0.095	-0.897	3
9	-	2 Coate	1		1 P	TF1_CICU_I	R-03-04D	_	8	108.457	1.838	117.99	0.399	-0.534	2
10		2 Coate	1		1 P		(-03-05A		9	160.234	2.269	141.208	0.448	-0.353	6:
11		2 Coate	2 J		1 0		-03-05B		10	103.412	2.404	135.930	0.221	-0.555	5
12		2 Coate	4		1 0		1-03-05C		12	110 754	2.112	110.017	0.540	-0.517	24
11		2 Coate	4		1 0		02 060		12	140.029	2 269	119.917	0.190	-0.340	
14		2 Coate	4		1 P		2-03-06R		14	140.038	2.308	107 373	0.702	-0.895	8
16		2 Coate	4		1 P	TF1 CICU I	3-03-060		15	141 301	2.701	113 692	0.365	-0.92	7
17		2 Coate	4		1 P	TF1 CICU I	R-03-06D		16	149.013	2.512	118.64	0.467	-0.582	8

• Right click and insert

F	ile	Hom	ie Insert	t Draw	Page Layout	Formula	is Data	Review	View	Help)			
[D	Get ata ×	Fron Fron	n Text/CSV n Web n Table/Rang	🕒 Recen	t Sources ng Connections	Refresh All ×	Queries & C Properties Edit Links	onnections	Stor	È cks	Currencies	^ Z ▼ Z ▼ Z	$\downarrow \boxed{\begin{smallmatrix} Z & A \\ A & Z \end{smallmatrix}}$ $\downarrow \qquad \text{Sort}$	Filte
			Get & Trans	form Data		Queri	ies & Connect	tions	_	Data T	vpes			Sort &
E1	1			√ f.	e l								-	
	4	•	P	6	D	(·	-	r.	C	ñ	1 a	1 x		~
1	Foil	A	Coating	Panel	Component ID		E	F	6	п	1	J	Pade	
2	1011	2	Coated	1 41101	PTF1 CICU B-03	3-03A	-					-	-	1
3	-	2	Coated	1	PTF1 CICU B-03	3-03B	_		_			_		2
4	-	2	Coated	1	PTF1 CICU B-0	3-030								3
5	-	2	Coated	1	PTF1 CICU R-0	3-03D								4
6		2	Coated	1	PTF1 CICU R-0	3-04A								5
7		2	Coated	1	PTF1 CICU R-0	3-04B								6
8		2	Coated	1	PTF1 CICU R-0	3-04C								7
9		2	Coated	1	PTF1 CICU R-0	3-04D								8
10)	2	Coated	1	PTF1 CICU R-03	3-05A								9
11	-	2	Coated	1	PTF1 CICU R-03	3-05B								10
12	1	2	Coated	1	PTF1 CICU R-03	3-05C								11
13		2	Coated	1	PTF1_CICU_R-0	3-05D								12
14	1	2	Coated	1	PTF1 CICU R-03	3-06A								13
15		2	Coated	1	PTF1 CICU R-03	3-06B								14
16	;	2	Coated	1	PTF1 CICU R-03	3-06C								15
17		2	Coated	1	PTF1 CICU R-03	3-06D								16
18		2	Coated	1	PTF1_CICU_R-0	3-07A								17
1.0		-	-											

Highlight Column D, click on Data, then on Text to Columns to open up a wizard.

In Step 1 of the Wizard, click Fixed Width; click ne	ext
--	-----

	-												20 C C C C C C C C C C C C C C C C C C C		
Fil	e Hom	e Insert	Draw	Page Layout Forn	nulas 🚦	Data Revie	ew Vi	ew Help	•					******	•
Ge	From From t a ~ E From	n Text/CSV n Web n Table/Rang	Recen Existin	t Sources ng Connections Refresh All ~	Quer	ies & Connection erties Links	s	Stocks (Currencies	^ Z↓ ▼ Z↓	Sort Fi	Iter Adv	an (apply 1 valiced Co	ext to blumns № ~	
		Get & Trans	form Data		Queries &	Connections		Data T	/pes		Sort	& Filter		Data Tools	••
DI			 ✓ J; 	component ID											
	А	В	С	D	E	F	G	Н	I.	J	K	L	М	N	0
1	oil Thickne	Coating	Panel	Component ID							PadID	Volume(%) Height(m	il) Area(%)	Offset)
2	2	Coated	1	PTF1_CICU_R-03-03A								1 50.98	35 1.26	8 80.44	7 0.
3	2	Coated	1	PTF1_CICU_R-03-03B								2 24.26	1.18	2 57.99	3 0.
4	2	Coated	1	PTF1_CICU_R-03-03C		Convert Text to	Columns	Wizard - Step	1 of 3			?	× 1.11	6 63.8	9 0.
5	2	Coated	1	PTF1_CICU_R-03-03D									1.38	3 107.42	4 0.
6	2	Coated	1	PTF1_CICU_R-03-04A		The Text Wizard h	as determin	ed that your da	ata is Delimite	d.			1.86	2 142.55	1 0.
7	2	Coated	1	PTF1_CICU_R-03-04B		If this is correct, ch	noose Next,	or choose the	data type that	best describ	es your data.		1.9	1 126.8	6 (
8	2	Coated	1	PTF1_CICU_R-03-04C		Original data type	e						1.92	5 131.48	2 0.
9	2	Coated	1	PTF1_CICU_R-03-04D		Choose the file t	une that he	st describes vo	ur data:				1.83	8 117.9	9 0.
10	2	Coated	1	PTF1_CICU_R-03-05A				st describes yo	ui uata.				2.26	9 141.20	8 0.
11	2	Coated	1	PTF1_CICU_R-03-05B			- Char	acters such as o	commas or tat	os separate e	ach field.		2.40	4 135.93	6 0.
12	2	Coated	1	PTF1_CICU_R-03-05C		Fixed wid	Ith Field	s are aligned in	columns with	spaces betw	een each field		2.11	2 126.30	2 0.
13	2	Coated	1	PTF1_CICU_R-03-05D									1.98	1 119.91	7 0.
14	2	Coated	1	PTF1_CICU_R-03-06A									2.36	8 118.29	7 0.
15	2	Coated	1	PTF1_CICU_R-03-06B									2.70	1 107.37	3 0.
16	2	Coated	1	PTF1_CICU_R-03-06C									2.48	6 113.69	2 0.
17	2	Coated	1	PTF1_CICU_R-03-06D									2.51	2 118.6	4 0.
18	2	Coated	1	PTF1_CICU_R-03-07A		Preview of select	ed data:						2.53	3 118.07	2 0.
19	2	Coated	1	PTF1_CICU_R-03-07B		1 brown and the	TD						2.52	6 116.14	9 0.
20	2	Coated	1	PTF1_CICU_R-03-07C		2 PTF1_CICU_	R-03-03P	L					2.83	4 115.79	7 (
21	2	Coated	1	PTF1_CICU_R-03-07D		3 PTF1_CICU 4 PTF1_CICU	R-03-03E R-03-03C	5					2.63	7 117.03	9 0.
22	2	Coated	1	PTF1_CICU_R-03-08A		5 PTF1 CICU	R-03-03E)					2.65	8 106.96	4 0.
23	2	Coated	1	PTF1_CICU_R-03-08B		7 PTF1_CICU	R-03-04P	5					2.74	1 103.36	9 (
24	2	Coated	1	PTF1_CICU_R-03-08C		8 PTF1_CICU_	R-03-040						× 2.69	6 99.6	7 0.
25	2	Coated	1	PTF1_CICU_R-03-08D		<						>	2.47	1 110.32	8 0.
26	2	Coated	1	PTF1_CICU_R-03-09A									2.52	2 103.80	9 0.
27	2	Coated	1	PTF1_CICU_R-03-09B				Can	cel	< Back	<u>N</u> ext >	<u>Eini</u> :	sh 2.41	4 106.45	1 0.
28	2	Coated	1	PTF1_CICU_R-03-09C				-	_		*****	/ 121.0	2.62	8 100.25	2 0.
29	2	Coated	1	PTF1_CICU_R-03-09D							2	8 130.05	2.66	6 97.54	6 <mark>0</mark> .
20	2	Contrad	1	DTE1 CICLI D 02 104							2	0 127.2	2 2 40	1 102 22	2 0

In *Step 2 of the Wizard*, set the column breaks as shown:

In *Step 3 of the Wizard*, individually highlight the unwanted columns - the underscores and dashes - and click on "Do not import column (skip)" for each one. Click Finish.

Convert Text to Columns Wizar	d - Step 3 of 3			?	×			
This screen lets you select each colu	imn and set the Dat	a Format.						
Column data format								
O <u>G</u> eneral					10.1			
◯ <u>I</u> ext	'General' converts numeric values to numbers, date values to da and all remaining values to text.							
O Date: MDY		Advand	ed					
Do not import column (skip)	÷							
D <u>e</u> stination: \$D\$1					Ť			
Data <u>p</u> review								
GeneSGeGeSGSGeSGeGeneral					-			
Component ID PTF1 CICU R-03-03A					^			
PTF1 CICU R-03-03B PTF1 CICU R-03-03C								
PTF1 CICU R-03-03D PTF1 CICU R-03-04A								
PTF1 CICU R-03 04B PTF1 CICU R-03 04C					~			
<pre></pre>					>			
	Cancel	< <u>B</u> ack	Next >	<u> </u>	iish			

After the columns populate, hide column H (CAD ID), and add the column headings shown below:

F	ile Hom	e Insert	Draw	Page La	ayout F	ormulas	Data Rev	view Vi	ew Hel	р	
Pa	aste	Calibri B I <u>U</u>	 11 ↓	- A^	A [*] Ξ :	= <u>-</u> »	v eb Wrap	Text e & Center	Gene	eral ~ % 9	
C	ipboard 🗔		Font		ГЪ		Alignment		۲ <u>۵</u>	Number	FC
M1	15		√ fx	13.10	6						
	А	В	C 🔸	D	E	F	G		• К	Ĺ	М
1	Foil Thickne	Coating	Panel	Block	Shape	Pad Def	Ap CoSneSR	Size	Replicate	PadID	Volume(%)
2	2	Bare	1	PTF1	CI	CU	S	3	В	1	28.541
3	2	Bare	1	PTF1	C .	CU	S	3	С	2	6.75
4	2	Bare	1	PTF1	CI	CU	S	3	D	3	11.168
5	2	Bare	1	PTF1	CI	CU	S	4	А	4	78.793
6	2	Bare	1	PTF1	CI	CU	S	4	В	5	62.549
7	2	Bare	1	PTF1	CI	CU	S	4	С	6	5 73.02
8	2	Bare	1	PTF1	CI	CU	S	4	D	5	63.075

Save the database! It is now ready for pivoting in excel or exporting into statistical software package.

The codes for the different pad stacks are as follows:

PTF Pattern Codes

PTF(block #)_(shape)(pad definition)_(aperture corners)_(CAD identifier).(size)(replicate)

Block #:	1 to 8 (there are 8 individual blocks in the test area)
Shape:	CI = Circle
	SQ = Square
	HR = Horizontal Rectangle
	VR = Vertical Rectangle
Pad Definition:	Cu = Copper (metal, or NSMD) defined
	SM = Solder Mask Defined
Aperture Corners:	R = Radiused or Squircles
	S = Square or Circular
CAD Identifier:	03 or 15; the size of the first feature on the line for CAD reference only
Size:	03 to 15 mils
Replicate	A, B, C or D (there are 4 replicates per paired row of features)

Step 6: Pivot Table

The pivot tables are easy to build:

- Click on the upper left corner of the sheet to highlight all contents
- Go to Insert, click on Pivot Table
- In the dialogue box, click New Worksheet and OK

• A new worksheet will appear:

File	Home I	nsert Draw	Page Layout	Formulas Da	ta Review	View Help	PivotTable .	Analyze Design		암 Share 🛛 🖵 Comments
PivotTa PivotT IIII Or Piv	able Name: Acti able1 otions ~	ve Field: Dri Field Settings Dov Active Field	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	→ Group Selection 1 Ungroup 2 Group Field Group	Insert Slice	er eline hections	h Change Data Source ~ Data	Clear ~ Select ~ Move PivotTable Actions	Fields, Items, & Se C. OLAP Tools ~ Relationships Calculations	Its * PivotChart Recommended PivotChart Recommended PivotEibles Tools Show ~
A3	¥ 1	$\times \checkmark f_X$								~
	А	В	С	D	Е	F	G	Н	1	PivotTable Fields × ×
1										Choose fields to add to report:
3]								Search D
4 5 6 7 8 9 10 11 12 13 14 15 16 17	To build a from the	PivotTable1 a report, chc PivotTable	pose fields Field List							Poll Thickness ▲ Coating ■ Panel ■ Block □ Pad Def Ap CoSnesR CAD ID □ Size ■ Area Ratio Ψ Drag fields between areas below: Ψ T Filters II Columns III Rows Σ Values
18 19 20										

There are many different ways to view data in pivot tables. This method was used to analyze the data from the Thin Foils experiment.

	E F Value Field Settings ? Source Name: Volume(mil3) Qustom Name: Average of Volume(mil3) Summarize value field by Choose the type of calculation that you want to use to summarize data from the selected field Sum Count Average Max Max Min Product OK Cancel 0%	PivotTable Fields	In the Σ Values field, click on the arrow next to Volume (mils3) and click on "Value Field Settings." Choose the Average and Standard Deviation for the Volume (mils3) and the Average for Volume %.
--	---	-------------------	---

The basic pivot table is now constructed. Click the Decrease Decimal point icon to the desired number of decimal points.

Fil	e <mark>Home</mark> In:	sert Draw Page Layout F	ormulas Data Review V	/iew Help PivotTa	able Analyze Design		E	Share 🖵 Comments
Pa: Cli	ste 💞 Kalibri B I	$\begin{array}{c c} & & & \\ & & & \\ \hline \\ \hline$	E E ≫ v 8b Wrap Text E E E E E E Merge & Cente Alignment	General \$ ~ % 5.0 F_ Number	0 00 Formatting ~ Table ~ Styles	Insert Delet	$\begin{array}{c c} \sum & A \\ \hline \\ e \ Format \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Analyze Data Analysis Λ
B3	¥ 1	\times \checkmark f_x SQ						~
1 2 3 4 5 6	A Coating Foil Thickness Shape Pad Def Ap CoSneSR	B Coated 77 2 77 SQ 77 SM 77 S 7	С	D	F	G	PivotTable Fields Choose fields to add to report: Search Foil Thickness Coating	× × • @ • • •
7	Row Labe -	Average of Volume(mil3)	StdDev of Volume(mil3)	Average of Volume	e(%)		Panel Block	
8 9 10 11 12	3 4 5 6 7	1 15 35 56 84	1 5 4 5 6	6 47 69 81 90			Shape Shape ApCoSneSR CAD ID Size Area Ratio	2 2 2 2
13 14	8	120 158	6 7	98 97			Drag fields between areas belo	DW:
15	10	203	9	101			▼ Filters	III Columns
16 17 18 19	11 12 13 14	241 299 350 407	11 13 17 22	100 104 104 104			Foil Thickness • Shape • Pad Def •	∑ Values ▼
20	15	470	26	104			E Rows	Σ Values
21	Grand Total	188	150	85			Size 💌	Average of Volume(mi 🔻
22 23 24	-							StdDev of Volume(mil3) ▼ Average of Volume(%) ▼

It is very helpful to add a column that calculates the Coefficient of Variation, or CV. It is the StdDev of Volume(mil3) divided by the Average of Volume(mil3).

11	× :	× / 1	fx =GETPIVOTDATA	("StdDev of Volume(mil3)",\$A\$7,	"Size",6)/GETPIVOTDATA("Ave	rage of Volume(mil3)",\$A
	А		в	с	D	*****
1	Coating	Coated	ज			
2	Foil Thickness	2	ज			
В	Shape	SQ	ज			
4	Pad Def	SM	ज			
Б	Ap CoSneSR	S	ज			
6						
7	Row Labe -	Average	of Volume(mil3)	StdDev of Volume(mil3)	Average of Volume(%)) CV
В	3		1	1	6	147%
Ð	4		15	5	47	30%
0	5		35	4	69	12%
1	6		56	5	81	8%
2	7		84	6	90	7%
3	8		120	6	98	5%
4	9		158	7	97	4%
5	10		203	9	101	4%
6	11		241	11	100	4%
7	12		299	13	104	4%
8	13		350	17	104	5%
9	14		407	22	104	5%
0	15	C.	470	26	104	6%
1	Grand Total		188	150	85	
10						

Use conditional formatting to color code the CVs:

Fil	e Home	Insert	Draw	Page Layout	Formulas	Data	Review	View	He	lp				
Pas	te ≪	В I <u>U</u>	11↓ □	→ A^ A [*] =	= = = », - = = = = =	, ab →= III	Wrap Text Merge & Ce	nter ~	Perce \$	entage × % 9	0 Co Fo	onditional Formatting ~ 1	ormat as able ~	Cell Styles Y
Cli	board 😼		Font	15	A	lignment		Ľ2		Number	5	Sty	rles	
11	-	\pm ×	√ fx	=GETPIVOTD	ATA("StdDev of	Volume	(mil3)",\$A\$	7,"Size",6)/GET	PIVOTDATA("Ave	erage o	f Volume(m	il3)" <i>,</i> \$A	\$7,"Size"
1	А		В		С			D		E		F		G
1 2 3 4 5	Coating Foil Thickne Shape Pad Def Ap CoSneSI	Coated 2 SQ SM R S	3	र र र र र										
7	Row Lab	- Avera	ge of Volum	ne(mil3) StdD	ev of Volume(I	mil3)	Average o	f Volume	(%)	cv				
В		3		1		1		6		147%				
Ð		4		15		5		47		30%				
0		5		35		4		69 91	ſ	12%				
2		7		84		- 6		an		7%	-			
3	c	onditional F	ormatting Rul	es Manager									?	×
4	s	how formattin	g rules for: Cu	rrent Selection	×									
5 6		New Ru	ile	Edit Rule	X Delete Rule	D D	upli <u>c</u> ate Rule	~ `	/					
7		Rule (applied	in order shown)		Format				Appli	es to			Stop If	True
8		Cell Value	e > 0.1501			AaBbCo	YyZz		=\$E\$8	8:\$E\$20		1		
0		Cell Value	e between 0.100	1 and 0.15		AaBbCo	YyZz		=\$E\$8	B:\$E\$20		Ţ		
1	Grand	Cell Value	e between 0 and	0.1		AaBbCo	YyZz		=\$E\$8	B:\$E\$20		ſ		
2 3 4														
6											ок	Close	A	Apply

The Pivot Table is ready to go. The results of the filtering by coating, foil thickness, shape and pad definition can be viewed in Appendix B.

APPENDIX B Volume, TE and CV Data from Thin Foil Test

Ľ]		
		Ċ	
(

WORST CASE

Coating Coated Foil Thicknc2 Shape SQ Pad Def SM

SIZE	VOL	TE %	cv
3	1	8	124%
4	16	49	30%
5	35	69	12%
6	57	81	8%
7	85	89	7%
8	122	98	5%
9	159	98	5%
10	204	102	4%
11	243	101	5%
12	300	104	4%
13	351	104	5%
14	408	104	5%
15	472	105	6%

Coating Coated Foil Thickn¢2 Shape Cl Pad Def CU

SIZE	VOL	TE %	CV
3	11	72	34%
4	40	138	19%
5	66	146	16%
6	87	140	16%
7	116	138	12%
8	139	126	12%
9	167	115	11%
10	204	115	11%
11	230	108	11%
12	271	106	12%
13	294	98	11%
14	329	94	11%
15	372	93	12%

Coating Bare Foil Thickne2 Shape SQ Pad Def SM

SIZE	VOL	TE %	CV
3	2	9	111%
4	12	37	47%
5	31	63	20%
6	58	83	9%
7	87	92	6%
8	124	99	5%
9	162	102	4%
10	209	107	4%
11	253	106	4%
12	311	109	4%
13	367	110	4%
14	426	110	5%
15	496	111	5%

Coating	Bare
Foil Thickne	2
Shape	CI
Pad Def	CU

SIZE	VOL	TE %	CV
3	3	21	86%
4	19	65	44%
5	42	91	45%
6	61	97	47%
7	97	114	30%
8	132	120	19%
9	168	118	15%
10	212	122	14%
11	251	119	14%
12	295	116	15%
13	328	110	14%
14	372	107	14%
15	426	107	15%

CoatingCoatedFoil Thickne3ShapeSQPad DefSM

SIZE	VOL	TE %	CV
3	3	13	75%
4	21	43	19%
5	40	53	11%
6	63	59	8%
7	92	65	6%
8	140	75	5%
9	179	74	4%
10	230	77	4%
11	270	75	5%
12	334	77	5%
13	390	77	5%
14	445	76	6%
15	514	76	7%

Coating Coated Foil Thickne3 Shape Cl Pad Def CU

SIZE	VOL	TE %	cv
3	17	76	34%
4	54	124	16%
5	84	125	13%
6	107	115	12%
7	138	109	11%
8	163	98	12%
9	193	89	12%
10	237	89	12%
11	266	83	12%
12	315	82	13%
13	345	76	12%
14	386	74	12%
15	439	73	12%

Coating Bare Foil Thickn€3 Shape SQ Pad Def SM

SIZE	VOL	TE %	cv
3	1	5	177%
4	3	7	90%
5	18	25	67%
6	52	49	39%
7	104	73	12%
8	162	87	8%
9	224	94	5%
10	293	100	4%
11	358	100	4%
12	451	105	3%
13	538	107	3%
14	631	108	3%
15	737	110	3%

Coating	Bare
Foil Thick	ne3
Shape	CI
Pad Def	CU

SIZE	VOL	TE %	CV
3	0	1	575%
4	5	12	158%
5	18	26	122%
6	21	22	145%
7	69	53	93%
8	150	90	44%
9	233	109	18%
10	304	117	13%
11	366	115	11%
12	441	116	12%
13	506	113	11%
14	577	111	12%
15	661	111	12%

CoatingCoatedFoil Thickne2ShapeSQPad DefCU

2nd BEST

2nd WORST

SIZE	VOL	TE %	CV
3	15	90	37%
4	52	161	20%
5	67	135	27%
6	95	136	21%
7	130	137	9%
8	157	126	9%
9	192	118	9%
10	236	118	8%
11	268	111	8%
12	317	110	8%
13	349	103	7%
14	390	99	8%
15	443	99	8%
	SIZE 3 4 5 6 7 8 9 10 11 12 13 14 15	SIZE VOL 3 15 4 52 5 67 6 95 7 130 8 157 9 192 10 236 11 268 12 317 13 349 14 390 15 443	SIZE VOL TE % 3 15 90 4 52 161 5 67 135 6 95 136 7 130 137 8 157 126 9 192 118 10 236 118 11 268 111 12 317 110 13 349 103 14 390 99 15 443 99

Coating Bare Foil Thickn¢2 Shape SQ Pad Def CU

SIZE	VOL	TE %	cv
3	6	34	79%
4	26	80	47%
5	32	63	81%
6	62	88	59%
7	110	115	29%
8	158	126	13%
9	202	127	10%
10	253	130	9%
11	306	129	9%
12	359	126	8%
13	404	121	7%
14	464	120	7%
15	530	119	7%

CoatingCoatedFoil Thickne3ShapeSQPad DefCU

SIZE	VOL	TE %	cv
3	19	80	33%
4	66	137	15%
5	90	121	14%
6	120	115	12%
7	153	107	9%
8	184	99	9%
9	221	91	9%
10	271	90	9%
11	311	86	9%
12	367	85	9%
13	403	80	7%
14	454	77	8%
15	514	76	8%

Coating Bare Foil Thickne3 Shape SQ Pad Def CU

SIZE	VOL	TE %	CV
3	2	6	289%
4	5	11	168%
5	7	9	170%
6	18	17	134%
7	67	47	95%
8	183	98	30%
9	273	114	9%
10	352	120	7%
11	429	120	6%
12	513	120	5%
13	588	117	5%
14	678	116	5%
15	780	116	5%

Coating Coated Foil Thickn¢2 Shape Cl Pad Def SM

SIZE	VOL	TE %	CV
3	1	5	158%
4	12	39	45%
5	30	65	23%
6	49	79	15%
7	75	88	13%
8	106	96	9%
9	140	97	10%
10	179	101	10%
11	216	101	9%
12	267	104	10%
13	314	104	10%
14	367	105	10%
15	421	105	10%

Coating Bare Foil Thickn¢2 Shape Cl Pad Def SM

SIZE	VOL	TE %	CV
3	1	5	159%
4	9	30	57%
5	26	58	29%
6	50	80	16%
7	77	91	12%
8	113	102	10%
9	148	104	10%
10	190	109	11%
11	232	110	10%
12	283	112	11%
13	336	113	11%
14	393	114	11%
15	456	115	11%

Coating Coated Foil Thickn€3 Shape Cl Pad Def SM

SIZE	VOL	TE %	CV
3	3	15	74%
4	17	40	31%
5	34	50	20%
6	54	58	15%
7	80	63	13%
8	122	74	10%
9	160	74	10%
10	203	76	10%
11	243	76	10%
12	299	78	11%
13	352	78	10%
14	407	78	10%
15	466	78	11%

Coating	Bare
oil Thick	ne3
hape	CI
ad Def	SM

SIZE	VOL	TE %	CV
3	0	0	585%
4	2	5	117%
5	15	21	82%
6	44	47	46%
7	91	71	23%
8	147	89	12%
9	204	96	11%
10	265	102	11%
11	327	103	10%
12	410	108	11%
13	490	110	11%
14	579	112	11%
15	676	113	11%