

Root Cause Stencil Design for SMT Component Thermal Lands

Outline/Agenda

- Introduction
 - □ Stencil design for thermal pads
- Experimental Methodology
 - Circuit board & stencil designs
 - □ Process & parameters
- Results & Discussion
 - D-Paks
 - □ Voiding QFNs & QFPs
 - □ Float Skew Bridging
- Conclusions
- Future Work

Introduction

Stencil Design for Thermal Pads

- □ Reduce solder paste area by 20-50%
- □ Window panes are recommended
- □ How many bricks?
- Best width for webs, perimeters?

Thermal Pad Test Board

- D-Paks, QFN 10 mm, QFN 9 mm, QFN 7 mm, QFN 4 mm, QFP144
- FR4 0.062", 1 oz copper, print and etch, ENIG finish

Stencils

- 50, 60, 70, and 80% area coverage on thermal pads
- Largest web, standard web, largest perimeter, most panes

Standard Design Parameters:

Pad Dimension After Reduction	Web Width
<100 mils	None
101-150 mils	8 mils
150-200 mils	15 mils
>200 mils	20 mils

What About Different Web Widths, # Bricks & Perimeter Spacing?

Q FN	
= 70% Largest Web	= 70% Std Design
70% Largest Perimeter	70% Most Panes

Paste Area (%)	Description / Design	Web Width (mils)	Perim. (mils)	Panes (#)
80	Largest Web	34	1.6	4
80	Standard Web	20	6	4
80	Largest Perimeter	8	10	9
80	Most Panes	8	1.6	20
70	Largest Web	52	1.6	4
70	Standard Web	20	16	4
70	Largest Perimeter	8	18	9
70	Most Panes	8	1.6	49
60	Largest Web	36	1.6	9
60	Standard Web	20	16	9
60	Largest Perimeter	8	29	9
60	Most Panes	8	1.6	100
50	Largest Web	47	1.6	9
50	Standard Web	20	16	16
50	Largest Perimeter	8	38	9
50	Most Panes	8	1.6	144

Print and Stencil Parameters

Print Speed	50 mm/sec	
Blade Length	300 mm	
Blade Pressure	6.0 kg (0.20 kg/cm)	
Separation Speed	3.0 mm/sec	
Separation Distance	2.0 mm	
Stencil Thickness	102 µm (4 mil)	
Stencil Material	Standard SS 6-10 µm grain	
Solder Paste	No clean SAC305 Type 4	

Reflow Profile

Setting	SAC305 RTS "linear"
Max Rising Slope	1.7 – 2.1 °C/sec
Soak Time (150-200 °C)	89 - 91 sec
TAL (Reflow time)	73 – 74 sec > 218°C
Peak temperature	244 to 247 °C
Profile length (25 °C to peak)	4.6 minutes

Box Plots & Tukey-Kramer Honest Significant Difference

D-Pak Components

50% Coverage Std. Design

60% Coverage Std. Design

70% Coverage Std. Design

ign 80% Coverage Std. Design

- Voiding not able to be measured
- Wetting on the ground pad varied

Voiding Results - Overview

Voiding Results - Coverage

Voiding Results - Stencil Design

QFN10 Design

Voiding Results - Stencil Design

80% STD

70%

STD

60% STD

50% STD

Float - Skew - Bridging

No bridging

Conclusions

Conclusions

✓ QFN voiding is affected by stencil design and area of coverage

- Standard window pane and largest perimeter give lowest voiding
- 70-80% area gives lowest voiding
- \checkmark QFP voiding is high enough to be unaffected by area or stencil design
- ✓ D-Paks were too dense for void measurement
 - 70-80% area was required to give full wetting of the ground pad

Future Work

Measure voiding: vary stencil thickness and overall paste volume
Modify solder volume on QFN I/O (perimeter) pads and measure voiding
Adjust stencil patterns and reflow profiles to minimize voiding

Greg Smith gsmith@blueringstencils.com

Tony Lentz <u>tlentz@fctassembly.com</u>