Root Cause Stencil Design for SMT Component Thermal Lands

Greg Smith
gsmith@blueringstencils.com

Tony Lentz
tlentz@fctassembly.com

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Outline/Agenda

- Introduction
 - Stencil design for thermal pads
- Experimental Methodology
 - Circuit board & stencil designs
 - Process & parameters
- Results & Discussion
 - D-Paks
 - Voiding QFNs & QFPs
 - Float - Skew - Bridging
- Conclusions
- Future Work

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Introduction

Stencil Design for Thermal Pads

- Reduce solder paste area by 20-50%
- Window panes are recommended
- How many bricks?
- Best width for webs, perimeters?

What about voids, float & bridging?

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

Thermal Pad Test Board
- D-Paks, QFN 10 mm, QFN 9 mm, QFN 7 mm, QFN 4 mm, QFP144
- FR4 0.062”, 1 oz copper, print and etch, ENIG finish

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

Stencils
- 50, 60, 70, and 80% area coverage on thermal pads
- Largest web, standard web, largest perimeter, most panes

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

Standard Design Parameters:

<table>
<thead>
<tr>
<th>Pad Dimension After Reduction</th>
<th>Web Width</th>
</tr>
</thead>
<tbody>
<tr>
<td><100 mils</td>
<td>None</td>
</tr>
<tr>
<td>101-150 mils</td>
<td>8 mils</td>
</tr>
<tr>
<td>150-200 mils</td>
<td>15 mils</td>
</tr>
<tr>
<td>>200 mils</td>
<td>20 mils</td>
</tr>
</tbody>
</table>

What About Different Web Widths, # Bricks & Perimeter Spacing?

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

<table>
<thead>
<tr>
<th>Paste Area (%)</th>
<th>Description / Design</th>
<th>Web Width (mils)</th>
<th>Perim. (mils)</th>
<th>Panes (#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Largest Web</td>
<td>34</td>
<td>1.6</td>
<td>4</td>
</tr>
<tr>
<td>80</td>
<td>Standard Web</td>
<td>20</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>80</td>
<td>Largest Perimeter</td>
<td>8</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>80</td>
<td>Most Panes</td>
<td>8</td>
<td>1.6</td>
<td>20</td>
</tr>
<tr>
<td>70</td>
<td>Largest Web</td>
<td>52</td>
<td>1.6</td>
<td>4</td>
</tr>
<tr>
<td>70</td>
<td>Standard Web</td>
<td>20</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>70</td>
<td>Largest Perimeter</td>
<td>8</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>70</td>
<td>Most Panes</td>
<td>8</td>
<td>1.6</td>
<td>49</td>
</tr>
<tr>
<td>60</td>
<td>Largest Web</td>
<td>36</td>
<td>1.6</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>Standard Web</td>
<td>20</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>Largest Perimeter</td>
<td>8</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>Most Panes</td>
<td>8</td>
<td>1.6</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>Largest Web</td>
<td>47</td>
<td>1.6</td>
<td>9</td>
</tr>
<tr>
<td>50</td>
<td>Standard Web</td>
<td>20</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>50</td>
<td>Largest Perimeter</td>
<td>8</td>
<td>38</td>
<td>9</td>
</tr>
<tr>
<td>50</td>
<td>Most Panes</td>
<td>8</td>
<td>1.6</td>
<td>144</td>
</tr>
</tbody>
</table>

QFN 10

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

Print and Stencil Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Speed</td>
<td>50 mm/sec</td>
</tr>
<tr>
<td>Blade Length</td>
<td>300 mm</td>
</tr>
<tr>
<td>Blade Pressure</td>
<td>6.0 kg (0.20 kg/cm)</td>
</tr>
<tr>
<td>Separation Speed</td>
<td>3.0 mm/sec</td>
</tr>
<tr>
<td>Separation Distance</td>
<td>2.0 mm</td>
</tr>
<tr>
<td>Stencil Thickness</td>
<td>102 µm (4 mil)</td>
</tr>
<tr>
<td>Stencil Material</td>
<td>Standard SS 6-10 µm grain</td>
</tr>
<tr>
<td>Solder Paste</td>
<td>No clean SAC305 Type 4</td>
</tr>
</tbody>
</table>

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

Reflow Profile

<table>
<thead>
<tr>
<th>Setting</th>
<th>SAC305 RTS “linear”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Rising Slope</td>
<td>1.7 – 2.1 °C/sec</td>
</tr>
<tr>
<td>Soak Time (150-200 °C)</td>
<td>89 - 91 sec</td>
</tr>
<tr>
<td>TAL (Reflow time)</td>
<td>73 – 74 sec > 218°C</td>
</tr>
<tr>
<td>Peak temperature</td>
<td>244 to 247 °C</td>
</tr>
<tr>
<td>Profile length (25 °C to peak)</td>
<td>4.6 minutes</td>
</tr>
</tbody>
</table>

Reflow Oven: 10 zone, reflow in air

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

Box Plots & Tukey-Kramer Honest Significant Difference

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Experimental Methodology

Process and Data

- Print Solder Paste
- Place & Reflow
- Take Pictures
- Tally Wet/Bridge
- Measure Voiding

Data

- 10 Boards Each
- 2 Stencils
- Inspection
 - Wetting / Solder Fillet
 - Bridging
 - Skew

- Voiding
 - Void Area %
 - Largest Void %

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
D-Pak Components

- Voiding not able to be measured
- Wetting on the ground pad varied

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Voiding Results - Overview

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Voiding Results - Coverage

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Voiding Results - Stencil Design

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Voiding Results - Stencil Design

QFP144 Design

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Conclusions

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Conclusions

✓ QFN voiding is affected by stencil design and area of coverage
 • Standard window pane and largest perimeter give lowest voiding
 • 70-80% area gives lowest voiding

✓ QFP voiding is high enough to be unaffected by area or stencil design

✓ D-Paks were too dense for void measurement
 • 70-80% area was required to give full wetting of the ground pad

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019
Future Work

- Measure voiding: vary stencil thickness and overall paste volume
- Modify solder volume on QFN I/O (perimeter) pads and measure voiding
- Adjust stencil patterns and reflow profiles to minimize voiding

Originally published in the Proceedings of SMTA International, Rosemont, IL, September 22 - September 26, 2019